Single chain versus single aggregate spectroscopy of conjugated polymers. Where is the border?
نویسندگان
چکیده
Single chains of conjugated polymers e.g. MEH-PPV (poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) have become interesting objects for single molecule spectroscopy (SMS) studies. However, most of the experiments so far were performed without full awareness of the isolation status of the polymer chains in host matrices. We used steady-state and time-resolved fluorescence methods and 2D polarization single molecule imaging technique to unravel the isolation/aggregation status of MEH-PPV in spin-coated films prepared at different conditions. It turned out that a sample showing isolated bright spots in fluorescence images could be obtained in a very broad concentration range of MEH-PPV when toluene was used as a solvent and PMMA as a matrix. If the MEH-PPV concentration was not sufficiently low, a substantial fraction of the fluorescence spots should be assigned to individual nano-aggregates rather than truly isolated chains of the polymer. Contrary to single aggregates, truly isolated MEH-PPV chains showed blue-shifted emission spectra, mono-exponential fluorescence decay dynamics with relatively long lifetimes (0.4-1.2 ns), and high polarization anisotropy. We argue that insufficient control of the concentration in the published SMS studies of MEH-PPV resulted in incorrect assigning of some spectroscopic properties of single aggregates to isolated MEH-PPV chains. We believe this to be the main origin of discrepancies among the published data in this field.
منابع مشابه
مطالعه عددی چگالی حالتها و رسانندگی الکترونی یک سیم مولکولی در حضور یک عامل خارجی
There is a great interest in the electronic properties of conjugated polymers. Numerous works on the electronic and conduction properties of single-chain conjugated polymers have been published. From an electronic conduction point of view, these systems are quasi-one dimensional. The aim of this paper is to try to investigate corresponding properties in conducting polymers in higher of one-di...
متن کاملSingle-Molecule Spectroscopic Studies of Conjugated Polymers
A semiconductor is a type of material which has electrical properties in between an insulator and a conductor. A conductor can be thought of as a group of atoms surrounded by a sea of free electrons, which are free to move throughout the material; in contrast, the electrons in an insulator are tightly localized on a specific atom or molecule. In a semiconductor, the electrons are localized as i...
متن کاملUnmasking bulk exciton traps and interchain electronic interactions with single conjugated polymer aggregates.
For conjugated polymer materials, there is currently a major gap in understanding between the fundamental properties observed in single molecule measurements and the bulk electronic properties extracted from measurements of highly heterogeneous thin films. New materials and methodologies are needed to follow the evolution from single chain to bulk film properties as multiple chains begin to int...
متن کاملA universal picture of chromophores in pi-conjugated polymers derived from single-molecule spectroscopy.
Single-molecule spectroscopy can provide insight into the fundamental photophysics of large macromolecules containing tens of thousands of carbon atoms by circumventing disorder broadening. We apply this technique to comparatively ordered ladder-type poly(para-phenylene) and highly disordered poly(phenylenevinylene) (PPV), both of which are materials of substantial technological interest. Ident...
متن کاملSingle chain spectroscopy of conformational dependence of conjugated polymer photophysics.
Single molecule confocal fluorescence microscopy was used to perform photoluminescence spectroscopy on single, isolated molecules of the conjugated polymer poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV). We show that the fluorescence from single chains of this electroluminescent polymer depends strongly on chain conformation. The time evolution of the spectra, emission in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 12 37 شماره
صفحات -
تاریخ انتشار 2010